71 research outputs found

    Investigation of the Heating Processes and Temperature Field of the Frequency-controlled Asynchronous Engine Based on Mathematical Models

    Get PDF
    The study of the temperature field of the engine for non-stationary modes is done. A numerical simulation of a non-stationary thermal process using dynamic EHD, the characteristic of the rate of rise of temperatures is done. An increase in the temperature of individual parts in the idle interval, when the power of heat release is significantly reduced, is established, and the reverse of the heat flow through the air gap is established. It is shown that the EHD method, in contrast to the FEM, is self-sufficient, which determines its practical value. In various parts of the speed control range in the implementation of various laws of regulation. At the same time, the main electrical, magnetic and additional losses associated with the fundamental voltage harmonics (FVH), and mechanical losses, as well as additional electrical and magnetic losses associated with the higher voltage harmonics, change. When using serial asynchronous engines as frequency-controlled. Permissible under the conditions of heating power is significantly reduced by the power of serial engines. Depending on the synchronous speed, the reduction is from 10 % to 20 %. Given the additional overheating due to higher voltage harmonics, as well as the deterioration of the cooling conditions when adjusting the rotational speed "down" from the nominal, it seems very relevant

    Certification of open-source software : a role for formal methods?

    Get PDF
    Despiteitshugesuccessandincreasingincorporationincom- plex, industrial-strength applications, open source software, by the very nature of its open, unconventional, distributed development model, is hard to assess and certify in an effective, sound and independent way. This makes its use and integration within safety or security-critical systems, a risk. And, simultaneously an opportunity and a challenge for rigourous, mathematically based, methods which aim at pushing software analysis and development to the level of a mature engineering discipline. This paper discusses such a challenge and proposes a number of ways in which open source development may benefit from the whole patrimony of formal methods.L. S. Barbosa research was partially supported by the CROSS project, under contract PTDC/EIA-CCO/108995/2008

    Clinical Trials of Rhodiola rosea in Tomsk in the Late Soviet Period

    Get PDF
    Rhodiola rosea is a Siberian medicinal plant possessing qualities of a central nervous system stimulant that has been traditionally used in the folk medicine of the indigenous peoples in Siberia. Between the 1960s and the 1980s, the plant had been intensively studied in the scientific laboratories of Tomsk. The study of physicochemical properties of the plant and its effects on humans was initially carried out in the Tomsk Medical Institute (TMI) by a large research group headed by A. S. Saratikov and E.A.Krasnov. Following a series of animal studies in the early 1960s, Saratikov started to enlist human volunteers from TMI students and stuff and examine the effects of the plant on concentration and auto-suggestion. These trials were later expanded, and a number of medical institutions in Tomsk incorporated them into their research programs, seemingly hailing Rhodiola rosea as a potential all-curing miracle drug for the overworked and stressed modern self. (Interestingly enough, there has recently been a renewed interest in the plant in the West that has corroborated a number of Soviet findings). At the same time, research into the history of Rhodiola rosea trials also highlights both numerous ethically problematic issues in the treatment of research participants as well as unexpected divergences from the officially prescribed Soviet clinical trials practices. Using examples from a large number of published scientific studies and corroborating them with materials from oral history interviews with researchers and study participants, this paper explores the local idiosyncrasies that shaped Soviet clinical trials on the ground.Funded by the Russian Science Foundation (grant no. 18-78-10016, ā€œBalancing knowledge reliability and ethical acceptability in clinical trials: from emergence of a randomized controlled trial to precision medicineā€)

    Model-Based Testing of Safety Critical Real-Time Control Logic Software

    Full text link
    The paper presents the experience of the authors in model based testing of safety critical real-time control logic software. It describes specifics of the corresponding industrial settings and discusses technical details of usage of UniTESK model based testing technology in these settings. Finally, we discuss possible future directions of safety critical software development processes and a place of model based testing techniques in it.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Talking quiescence: a rigorous theory that supports parallel composition, action hiding and determinisation

    Get PDF
    The notion of quiescence - the absence of outputs - is vital in both behavioural modelling and testing theory. Although the need for quiescence was already recognised in the 90s, it has only been treated as a second-class citizen thus far. This paper moves quiescence into the foreground and introduces the notion of quiescent transition systems (QTSs): an extension of regular input-output transition systems (IOTSs) in which quiescence is represented explicitly, via quiescent transitions. Four carefully crafted rules on the use of quiescent transitions ensure that our QTSs naturally capture quiescent behaviour. We present the building blocks for a comprehensive theory on QTSs supporting parallel composition, action hiding and determinisation. In particular, we prove that these operations preserve all the aforementioned rules. Additionally, we provide a way to transform existing IOTSs into QTSs, allowing even IOTSs as input that already contain some quiescent transitions. As an important application, we show how our QTS framework simplifies the fundamental model-based testing theory formalised around ioco.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Enhancement of Anisotropy due to Fluctuations in Quasi-One-Dimensional Antiferromagnets

    Full text link
    It is shown that the observed anisotropy of magnetization at high magnetic fields in RbMnBr3 , a quasi-one-dimensional antiferromagnet on a distorted stacked triangular lattice, is due to quantum and thermal fluctuations. These fluctuations are taken into account in the framework of linear spin-wave theory in the region of strong magnetic fields. In this region the divergent one-dimensional integrals are cut off by magnetic field and the bare easy-plane anisotropy. Logarithmical dependence on the cutoff leads to the "enhancement" of the anisotropy in magnetization. Comparison between magnetization data and our theory with parameters obtained from neutron scattering experiments has been done.Comment: 15 pages + 5 postscript figures available upon request, RevTex

    Towards Symbolic Model-Based Mutation Testing: Combining Reachability and Refinement Checking

    Full text link
    Model-based mutation testing uses altered test models to derive test cases that are able to reveal whether a modelled fault has been implemented. This requires conformance checking between the original and the mutated model. This paper presents an approach for symbolic conformance checking of action systems, which are well-suited to specify reactive systems. We also consider nondeterminism in our models. Hence, we do not check for equivalence, but for refinement. We encode the transition relation as well as the conformance relation as a constraint satisfaction problem and use a constraint solver in our reachability and refinement checking algorithms. Explicit conformance checking techniques often face state space explosion. First experimental evaluations show that our approach has potential to outperform explicit conformance checkers.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Observation of the Cabibbo-suppressed decay Xi_c+ -> p K- pi+

    Full text link
    We report the first observation of the Cabibbo-suppressed charm baryon decay Xi_c+ -> p K- pi+. We observe 150 +- 22 events for the signal. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600 GeV/c Sigma- beam. The branching fractions of the decay relative to the Cabibbo-favored Xi_c+ -> Sigma+ K- pi+ and Xi_c+ -> X- pi+ pi+ are measured to be B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> Sigma+ K- pi+) = 0.22 +- 0.06 +- 0.03 and B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> X- pi+ pi+) = 0.20 +- 0.04 +- 0.02, respectively.Comment: 5 pages, RevTeX, 3 figures (postscript), Submitted to Phys. Rev. Let

    Methane Clumped Isotopes: Progress and Potential for a New Isotopic Tracer

    Get PDF
    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding petroleum systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (ā€˜clumped isotopesā€™) are opening a valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. In general, clumped isotope measurements indicate plausible formation temperatures for abiotic, thermogenic, and microbial methane in many geological environments, which is encouraging for the further development of this measurement as a geothermometer, and as a tracer for the source of natural gas reservoirs and emissions. We also highlight, however, instances where clumped isotope derived temperatures are higher than expected, and discuss possible factors that could distort equilibrium formation temperature signals. In microbial methane from freshwater ecosystems, in particular, clumped isotope values appear to be controlled by kinetic effects, and may ultimately be useful to study methanogen metabolism
    • ā€¦
    corecore